

前言

- ▶ 一般大樓或是辦公廠房,空調系統耗電約占了總耗電的 三分之一,某些特別建築如大型購物中心和工業廠房, 其耗電量更達總耗電量的一半。
- ▶ 隨著政府提倡及實施「室內空氣品質法政策」,勢必要 引進新鮮的外氣,以降低二氧化碳等污染物的濃度至 1000ppm以下,但引進外氣會大大增加空調的耗能。
- ▶ 節能減碳政策的推行,使用單位皆將注意力置於空調系統的節能技術,且政府宣導將室溫設定於26°C以上,間接影響空調盤管的除濕效果,造成空間不適感。
- ▶ 單純使用冷凝除濕,通常需要再熱,造成能源的浪費。

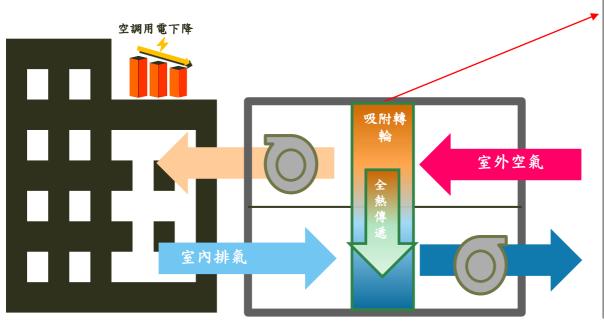
除濕方式的比較

除濕方法與優點	原理	缺黑占
冷凝除濕 (可順便降溫)	降低溫度使水結露排出	有時溫度會太低, 需要再熱
固態除濕材料 (穩定、容易維修)	利用物理吸附或化學 吸附方法除去水分 (固態吸附材料)	吸濕量相對較低, 有時會有粉塵問題
液態除濕材料 (具有高接觸面積 與可撓式)	利用物理吸附或化學 吸附方法除去水分 (液態吸附溶液)	具腐蝕性,維修不易

空調吸附除濕系統應用

- ❖ 吸附除濕空調系統型式
 - 高溫再生系統應用:「結合熱泵吸附除濕空調系統」
 - 低溫再生系統應用:「氣對氣全熱交換器」
- 吸附材於系統應用之性質需求

	顯熱有效度	潛熱有效度
結合熱泵吸附除濕空調系統	低	高
氣對氣全熱交換器	高	高


吸附材性質測試

	高溫再生吸附材性能測試				低溫再生吸附材性能測試			
吸附材	風速 (m/s)			平均脫附率 (g/min)	風速 (m/s)	再生條件 (°C、RH%)	平均吸附率 (g/min)	平均脫附率 (g/min)
蜂巢式吸附材料			8.2	10.9			6.9	7.1
吸附材料A	2.0	F0	10.8	17.4	2.0	25°C	0.2	7.0
吸附材料B	2.8	50	17.2	7.4	2.8	50%	7.0	6.7
吸附材料C			1.07	-6.4				

低溫再生系統應用方式

- 能量回收之節能技術-全熱交換器
 - > 全熱交換器指氣體對氣體之熱交換器

應用契機

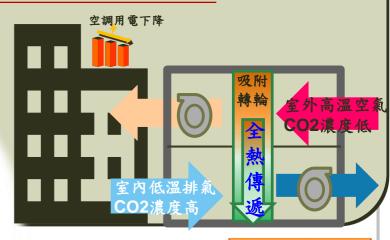
政府實施「室內空氣品質法政策」,引進新鮮外氣以降低二氧化碳濃度成為必要程序,伴隨造成空調負荷增加。

台灣夏季高溫高濕,濕度調節是達到空調節能

<u>與舒適</u>的關鍵技術

設備特色

吸附型式轉輪


- ▶吸附材料填充型式
- >除濕能力佳,成本低

後續維護

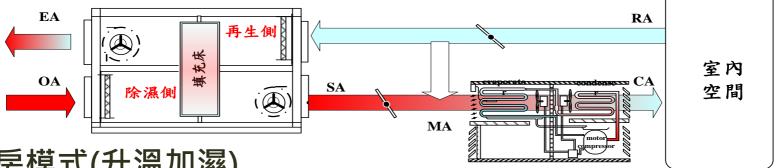
- ▶維護簡單成本低
- >吸附材料可更換,轉輪本體無需更換

運轉原理

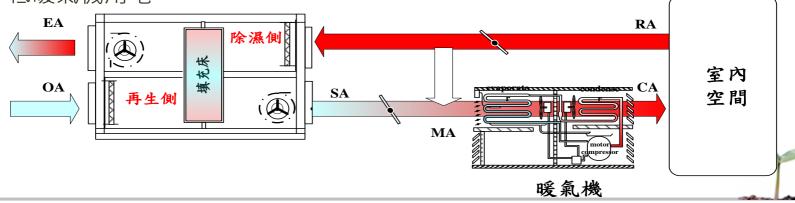
填充式轉輪將外氣<mark>降溫及除溼</mark>,達到兼顧<u>空</u>調節能與室內空氣品質優化雙重效果

適用場域

適用於需長期引進外氣之場域


- 百貨商場
- 醫院診所
- 辦公大樓
- 旅館

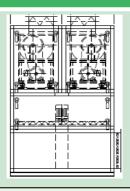
外氣引入節能技術 - 全熱交換器

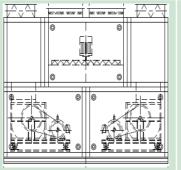

❖ 冷房模式(降溫除濕)

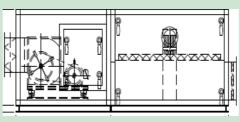
於夏季外氣高於室內溫度時,外氣經過填充床可降低溫度與相對濕度,有效降 低冷氣機用電

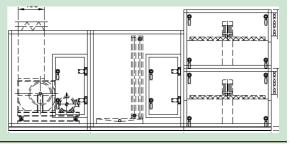
❖ 暖房模式(升溫加濕)

冷氣機
■ 於冬季外氣低於室內溫度時,外氣經過填充床可增加溫度與相對濕度,有效降低暖氣機用電


系統配置規劃


❖ 系統安裝調整性高


- 設備依現場條件可為立式或臥式
- 全熱交換器可整合空調箱,降低空間受限因素。


立式 臥式(可吊掛) 整合型(含冰水管)

圖示

實際安裝照上

氣對氣全熱交換器性能測試

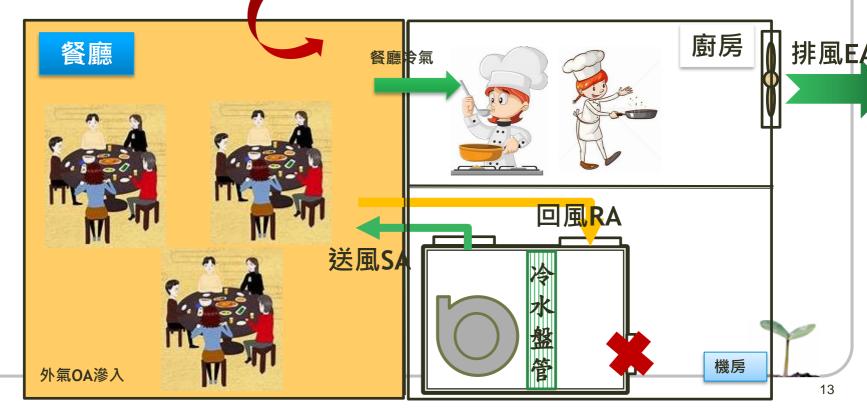
	實際測試	夏	春、秋	*
.1 4-	T(°C)	33.4	25	15.8
外氣 條件	RH(%)	58	80	47
	w(g/kg)	18.9	16	5.2
<i>M</i> →	T(°C)	28.8	26.5	22.6
供風 條件	RH(%)	53	59	36
	w(g/kg)	13.2	12.8	6.1
	T(°C)	25	24.5	23
回風 條件	RH(%)	58	62	36
121/11	w(g/kg)	11.5	11.9	6.3
有	顯熱有效度(%)	54.8	0	94.4
效	潛熱有效度(%)	77.4	78.4	85.5
度	全熱有效度(%)	70.4	60.4	92.0
除濕	率(-)或加濕率(+)(kg/hr)	-4.8	-2.6	+0.75

吸附式全熱交換器系效益評估

月		外氣條件		用電	節能	
份	T (°C)	RH (%)	H (kJ/kg)	改善前 (kWh)	改善後 (kWh)	效益 (%)
1	16.6	72.6	36.7	3,691	3,410	7.6%
2	17.0	77.4	40.7	3,442	3,184	7.5%
3	21.6	68.4	48	2,150	1,903	11.5%
4	22.1	73.6	53.4	2,230	1,929	13.5%
5	27.0	71.5	67.9	2,633	2,272	13.7%
6	27.8	75.3	70.3	2,586	2,229	13.8%
7	32.4	65.2	82.5	2,868	2,269	20.9%
8	30.8	66.8	83.2	2,860	2,248	21.4%
9	30.8	67.1	76.2	2,722	2,308	15.2%
10	25.3	74.4	62.8	2,434	2,127	12.6%
11	22.1	71.5	52	2,191	1,897	13.4%
12	17.1	65.5	36.9	3,565	3,237	9.2%
	終	計		33,372	29,014	13.1%

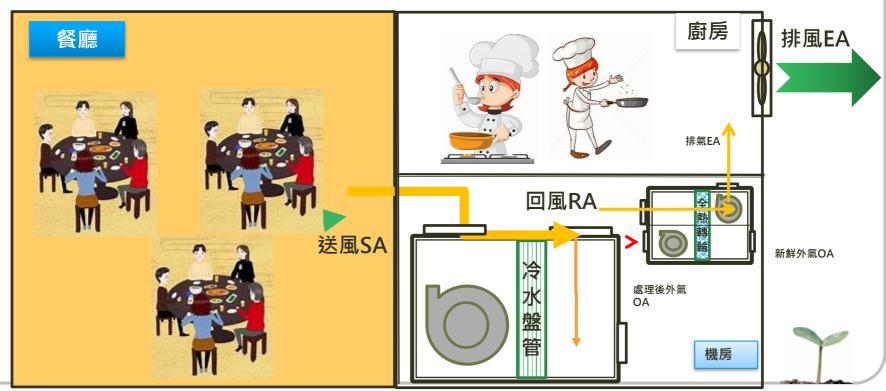
全熱交換器特色表較

		旋轉式全熱交換器	交叉流全熱交換器			
全熱交換 方式		換熱方式:	換熱方式: 冷熱空氣以交叉流方式通過 換熱元件進行熱交換 設備元件: 風機*2 換熱原件*1(精密薄膜元件)			
劫六	顯熱 (溫度)	68%	74%			
熱交換效	潛熱 (淫度)	75%	61%			
率	全熱 (焓)	65%	55%			
	規格 (H)	1500/3750/5000/7500/10000	150/250/350/500			
	维護保 Š	▶ 風機▶ 濾網▶ 吸附式轉輪吸附材料● 更換頻率: 2~3年(依現場操作條件略有差異)	▶ 風機▶ 濾網▶ 精密薄膜元件● 更換頻率: 2~3年(依現場操作條件略有差異)			
	安裝方	吊掛式 落地式	吊掛式			
特	色	性能佳、 維護保養容易成本低	潛熱效能差、 維護成本高			
			11			


⇔實際案例

中部某百貨公司

■ 現況廚房有抽排風設備,若無藉由空調箱補充新鮮外氣,容易將餐廳冷氣抽進廚房內 ,且因室內為負壓,外氣會由自動門、梯間等地方滲入(外氣由多個入口進入室內),增 加餐廳內空調負荷。


■ 若沒進行換氣,廳內易會<mark>→CO</mark>2濃度過高的問題(1000ppm以上)。

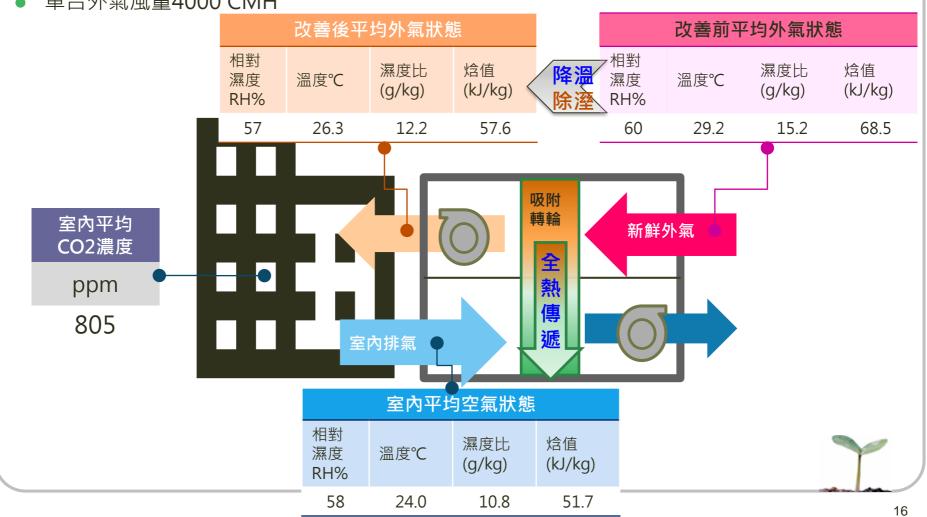
中部某百貨公司

- 改善後藉由吸附式全熱交換器引入外氣,進行降溫除濕後再進入空調箱,降低餐廳 空調負荷,因主動補充外氣降低室內負壓程度,減少外氣由其他地方滲入的機會。
- 將廢冷回收利用後之排氣補充至廚房,降低餐廳冷氣滲入廚房的機會。
- 可將室內CO2濃度控制在標準以內,達到節能與維持室內空氣品質雙重效果。

中部某百貨公司

• 利用餐廳排氣廢冷,對引進外氣進行降溫除濕,各季節處理後外氣狀態如下

季節	外氣條件					處理後外氣條件				室內空氣狀態	
	°C	RH%	ω (g/kg)	H (kJ/kg)	°C	RH%	ω (g/kg)	H (kJ/kg)	°C	RH%	
春秋	29.5	68.7	17.9	75.6	27.0	59.7	13.3	61.3	25	60	
夏	32.8	67.0	21.2	87.3	28.5	62.0	15.1	67.3	25		
冬	16.4	74.7	8.6	38.4	18.3	75.1	9.8	43.5	20	70	

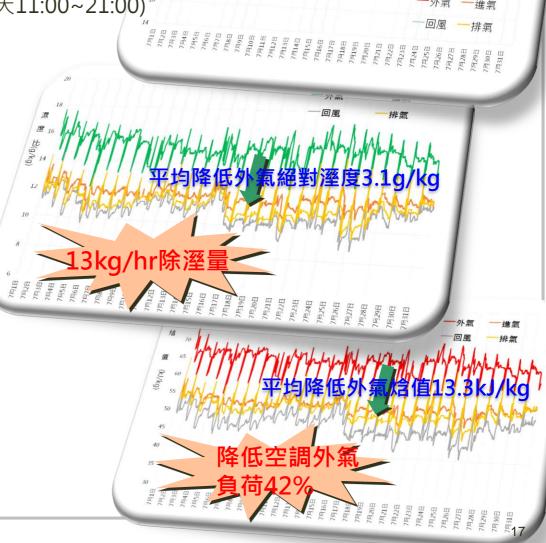


北部某百貨公司運轉成果

- 109年資料蒐集期間:7/1~7/31(每天11:00~21:00)
- 單台外氣風量4000 CMH

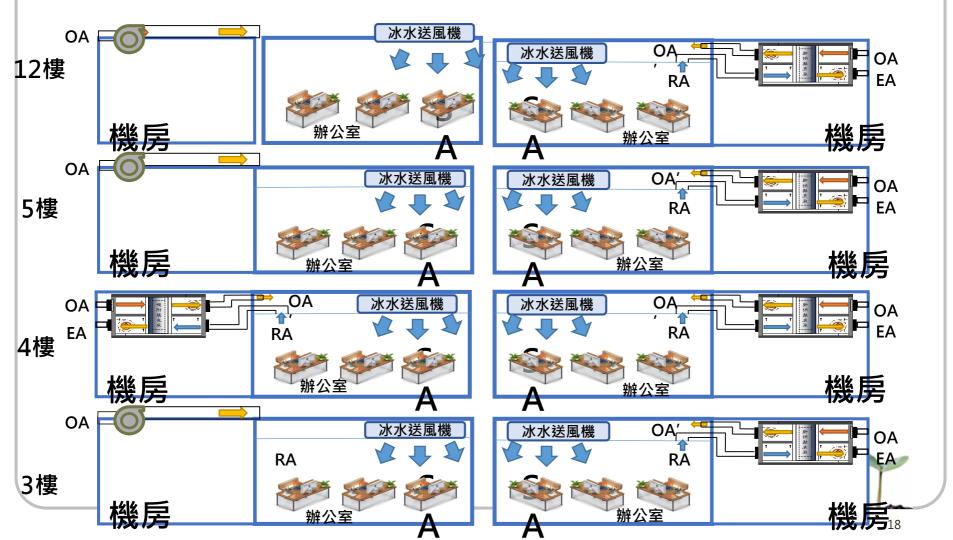
平均降低外氣溫度2.9℃

運轉成果

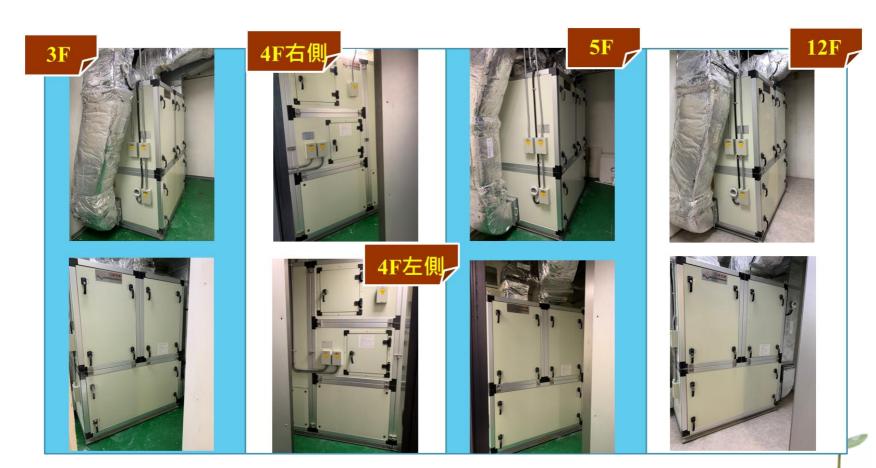

109年資料蒐集期間:7/1~7/31(每天11:00~21:00)*

單台外氣風量4000 CMH

處理後之新鮮外氣



現場裝設照片



■ 分別於四個樓層共安裝五套吸附式除濕全熱交換器,取代原本的外氣風機

❖設備安裝照片

- 吸附除濕全熱交換器監控系統
 - 透過DDC主機進行設備控制設定、資料存取及運轉狀態顯示。
 - 可即時監看系統運轉效率,進行預防性維護。

排程設定功能可依照 實際上班時間進行設 備自動起停控制

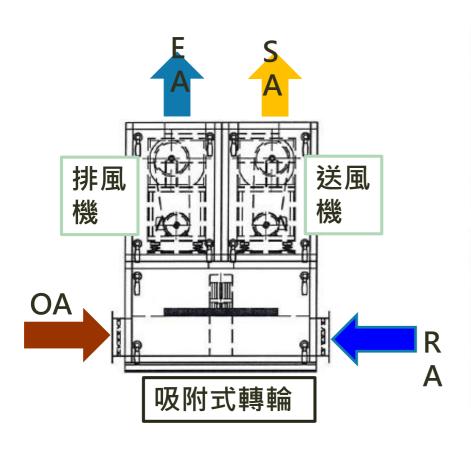
一對多DDC控制器

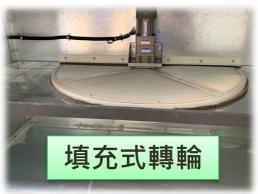
人機介面首頁

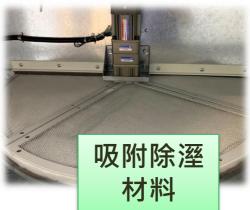
時間排程設定頁面

狀態顯示及系統設定頁面

控制盤內側(DDC主機背面)




數據紀錄顯示頁面



■吸附除濕全熱交換器



■ 全熱交換器7月運轉資料彙整

• 運轉期間:週一至週五

報告結束感謝縣

